Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151412, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38608422

RESUMO

Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-ß1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.

2.
Stem Cell Res Ther ; 15(1): 98, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581019

RESUMO

BACKGROUND: In vitro chondrogenesis of mesenchymal stromal cells (MSCs) driven by the essential chondro-inducer transforming growth factor (TGF)-ß is instable and yields undesired hypertrophic cartilage predisposed to bone formation in vivo. TGF-ß can non-canonically activate bone morphogenetic protein-associated ALK1/2/3 receptors. These have been accused of driving hypertrophic MSC misdifferentiation, but data remained conflicting. We here tested the antihypertrophic capacity of two highly specific ALK1/2/3 inhibitors - compound A (CompA) and LDN-212854 (LDN21) - in order to reveal potential prohypertrophic contributions of these BMP/non-canonical TGF-ß receptors during MSC in vitro chondrogenesis. METHODS: Standard chondrogenic pellet cultures of human bone marrow-derived MSCs were treated with TGF-ß and CompA (500 nM) or LDN21 (500 nM). Daily 6-hour pulses of parathyroid hormone-related peptide (PTHrP[1-34], 2.5 nM, from day 7) served as potent antihypertrophic control treatment. Day 28 samples were subcutaneously implanted into immunodeficient mice. RESULTS: All groups underwent strong chondrogenesis, but GAG/DNA deposition and ACAN expression were slightly but significantly reduced by ALK inhibition compared to solvent controls along with a mild decrease of the hypertrophy markers IHH-, SPP1-mRNA, and Alkaline phosphatase (ALP) activity. When corrected for the degree of chondrogenesis (COL2A1 expression), only pulsed PTHrP but not ALK1/2/3 inhibition qualified as antihypertrophic treatment. In vivo, all subcutaneous cartilaginous implants mineralized within 8 weeks, but PTHrP pretreated samples formed less bone and attracted significantly less haematopoietic marrow than ALK1/2/3 inhibitor groups. CONCLUSIONS: Overall, our data show that BMP-ALK1/2/3 inhibition cannot program mesenchymal stromal cells toward stable chondrogenesis. BMP-ALK1/2/3 signalling is no driver of hypertrophic MSC misdifferentiation and BMP receptor induction is not an adverse prohypertrophic side effect of TGF-ß that leads to endochondral MSC misdifferentiation. Instead, the prohypertrophic network comprises misregulated PTHrP/hedgehog signalling and WNT activity, and a potential contribution of TGF-ß-ALK4/5-mediated SMAD1/5/9 signalling should be further investigated to decide about its postulated prohypertrophic activity. This will help to successfully engineer cartilage replacement tissues from MSCs in vitro and translate these into clinical cartilage regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Proteína Relacionada ao Hormônio Paratireóideo , Animais , Humanos , Camundongos , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Proteínas Hedgehog/genética , Hipertrofia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Fator de Crescimento Transformador beta/metabolismo
3.
Orthopadie (Heidelb) ; 52(11): 907-915, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37843575

RESUMO

The variability of PRP is a major contributor to the lack of evidence regarding the therapeutic effect of PRP in musculoskeletal diseases. In a large study, we are currently investigating factors that may influence PRP variability. Interim results showed that concentrations of IL­6, but not IGF­1 or cellular constituents, were significantly decreased in PRP samples from vegans compared with omnivores and tended to be decreased compared to samples from vegetarians. This suggests that diet may have a significant influence on therapeutically active PRP constituents. However, the constituents studied here did not appear to be significantly affected by the timing of the sampling. Identification of significant variables affecting PRP composition will be critical to provide sufficient medical evidence for the therapeutic effects of PRP in orthopedic conditions.


Assuntos
Doenças Musculoesqueléticas , Plasma Rico em Plaquetas , Humanos , Plasma Rico em Plaquetas/química , Manejo de Espécimes , Fator A de Crescimento do Endotélio Vascular/análise
4.
Cells ; 12(12)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371129

RESUMO

Elaborate bioreactor cultivation or expensive growth factor supplementation can enhance extracellular matrix production in engineered neocartilage to provide sufficient mechanical resistance. We here investigated whether raising extracellular calcium levels in chondrogenic cultures to physiologically relevant levels would provide a simple and inexpensive alternative to enhance cartilage neogenesis from human articular chondrocytes (AC) or bone marrow-derived mesenchymal stromal cells (BMSC). Interestingly, AC and BMSC-derived chondrocytes showed an opposite response to a calcium increase from 1.8 mM to 8 mM by which glycosaminoglycan (GAG) and collagen type II production were elevated during BMSC chondrogenesis but depressed in AC, leading to two-fold higher GAG/DNA values in BMSC-based neocartilage compared to the AC group. According to control treatments with Mg2+ or sucrose, these effects were specific for CaCl2 rather than divalent cations or osmolarity. Importantly, undesired pro-hypertrophic traits were not stimulated by calcium treatment. Specific induction of PTHrP mRNA and protein by 8.0mM calcium only in AC, along with negative effects of recombinant PTHrP1-34 on cartilage matrix production, suggested that the PTHrP pathway contributed to the detrimental effects in AC-based neocartilage. Altogether, raising extracellular calcium levels was discovered as a novel, simple and inexpensive stimulator for BMSC-based cartilage neogenesis without the need for special bioreactors, whereas such conditions should be avoided for AC.


Assuntos
Condrócitos , Células-Tronco Mesenquimais , Humanos , Condrócitos/metabolismo , Cálcio/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Células Cultivadas , Cartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glicosaminoglicanos/metabolismo
5.
Methods Mol Biol ; 2598: 75-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355286

RESUMO

Adipose-derived stromal cells (ASC) are a promising alternative cell source to chondrocytes as well as to bone marrow-derived mesenchymal stromal cells (BMSC) in cartilage tissue engineering and repair. Here we describe ASC isolation from liposuction by-products by collagenase-based tissue digestion combined with cell filtration and followed by monolayer attachment and expansion culture. Quality control requires confirmation of correct surface marker expression and multilineage differentiation potential by a trilineage differentiation assay.


Assuntos
Tecido Adiposo , Condrogênese , Diferenciação Celular , Células Estromais/metabolismo , Cartilagem , Condrócitos , Células Cultivadas , Células da Medula Óssea
6.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230927

RESUMO

Differentiating mesenchymal stromal cells (MSCs) into articular chondrocytes (ACs) for application in clinical cartilage regeneration requires a profound understanding of signaling pathways regulating stem cell chondrogenesis and hypertrophic degeneration. Classifying endochondral signals into drivers of chondrogenic speed versus hypertrophy, we here focused on insulin/insulin-like growth factor 1 (IGF1)-induced phosphoinositide 3-kinase (PI3K)/AKT signaling. Aware of its proliferative function during early but not late MSC chondrogenesis, we aimed to unravel the late pro-chondrogenic versus pro-hypertrophic PI3K/AKT role. PI3K/AKT activity in human MSC and AC chondrogenic 3D cultures was assessed via Western blot detection of phosphorylated AKT. The effects of PI3K inhibition with LY294002 on chondrogenesis and hypertrophy were assessed via histology, qPCR, the quantification of proteoglycans, and alkaline phosphatase activity. Being repressed by ACs, PI3K/AKT activity transiently rose in differentiating MSCs independent of TGFß or endogenous BMP/WNT activity and climaxed around day 21. PI3K/AKT inhibition from day 21 on equally reduced chondrocyte and hypertrophy markers. Proving important for TGFß-induced SMAD2 phosphorylation and SOX9 accumulation, PI3K/AKT activity was here identified as a required stage-dependent driver of chondrogenic speed but not of hypertrophy. Thus, future attempts to improve MSC chondrogenesis will depend on the adequate stimulation and upregulation of PI3K/AKT activity to generate high-quality cartilage from human MSCs.


Assuntos
Insulinas , Células-Tronco Mesenquimais , Fosfatase Alcalina/metabolismo , Cartilagem/metabolismo , Diferenciação Celular , Células Cultivadas , Condrogênese , Humanos , Hipertrofia , Fator de Crescimento Insulin-Like I/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
Stem Cell Res Ther ; 13(1): 168, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477424

RESUMO

BACKGROUND: Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchymal stromal cells (MSC) into chondrocytes in vitro will install the adequate biological mechano-competence of native articular chondrocytes (AC). METHODS: The mechano-competence of human MSC- and AC-derived neocartilage was compared during differentiation for up to 35 days. The neocartilage layer was subjected to physiologic dynamic loading in a custom-designed bioreactor and assayed for mechano-sensitive gene and pathway activation, extracellular matrix (ECM) synthesis by radiolabel incorporation, nitric oxide (NO) and prostaglandin E2 (PGE2) production. Input from different pathways was tested by application of agonists or antagonists. RESULTS: MSC and AC formed neocartilage of similar proteoglycan content with a hardness close to native tissue. Mechano-stimulation on day 21 and 35 induced a similar upregulation of mechano-response genes, ERK phosphorylation, NO production and PGE2 release in both groups, indicating an overall similar transduction of external mechanical signals. However, while AC maintained or enhanced proteoglycan synthesis after loading dependent on tissue maturity, ECM synthesis was always significantly disturbed by loading in MSC-derived neocartilage. This was accompanied by significantly higher COX2 and BMP2 background expression, > 100-fold higher PGE2 production and a weaker SOX9 stimulation in response to loading in MSC-derived neocartilage. Anabolic BMP-pathway activity was not rate limiting for ECM synthesis after loading in both groups. However, NFκB activation mimicked the negative loading effects and enhanced PGE2 production while inhibition of catabolic NFκB signaling rescued the load-induced negative effects on ECM synthesis in MSC-derived neocartilage. CONCLUSIONS: MSC-derived chondrocytes showed a higher vulnerability to be disturbed by loading despite proper differentiation and did not acquire an AC-like mechano-competence to cope with the mechanical stress of a physiologic loading protocol. Managing catabolic NFκB influences was one important adaptation to install a mechano-resistance closer to AC-derived neocartilage. This new knowledge asks for a more functional adaptation of MSC chondrogenesis, novel pharmacologic co-treatment strategies for MSC-based clinical cartilage repair strategies and may aid a more rational design of physical rehabilitation therapy after AC- versus MSC-based surgical cartilage intervention.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Prostaglandinas E/metabolismo , Proteoglicanas/metabolismo
8.
Front Cell Dev Biol ; 8: 581331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195222

RESUMO

Mesodermal differentiation of induced pluripotent stem cells (iPSCs) in vitro and subsequent specification into mesodermal derivatives like chondrocytes is currently afflicted with a substantial cell loss that severely limits tissue yield. More knowledge on the key players regulating mesodermal differentiation of iPSCs is currently needed to drive all cells into the desired lineage and to overcome the current need for intermediate cell selection steps to remove misdifferentiated cells. Using two independent human iPSC lines, we here report that a short initial WNT/ß-catenin pulse induced by the small molecule CHIR99021 (24 h) enhanced expression of mesodermal markers (PDGFRα, HAND1, KDR, and GATA4), supported the exit from pluripotency (decreased OCT4, SOX2, and LIN28A) and inhibited ectodermal misdifferentiation (reduced PAX6, TUBB3, and NES). Importantly, the initial CHIR pulse increased cell proliferation until day 14 (five-fold), adjusted expression of adhesion-related genes (CDH3 up, CDH6 down) and increased extracellular matrix (ECM)-related gene expression (COL6, COL1, COL3, COL5, DCN, NPNT, LUM, MGP, MATN2, and VTN), thus yielding more matrix-interacting progenitors with a high aggregation capability. Enhanced contribution to chondrogenic pellet formation increased the cell yield after eight weeks 200-fold compared to controls. The collagen type II and proteoglycan-positive area was enlarged in the CHIR group, indicating an increased number of cartilage-forming cells. Conclusively, short initial WNT activation improved mesoderm commitment and our data demonstrated for the first time to our knowledge that, acting via stimulation of cell proliferation, ECM expression and cell aggregation, WNT pulsing is a key step to make cell selection steps before chondrogenesis obsolete. This advanced understanding of the WNT/ß-catenin function is a major step toward robust and efficient generation of high-quality mesodermal progenitors from human iPSCs and toward rescuing low tissue yield during subsequent in vitro chondrogenesis, which is highly desired for clinical cartilage regeneration, disease modeling and drug screening.

9.
Front Cell Dev Biol ; 8: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195247

RESUMO

Guiding progenitor cell development between chondral versus endochondral pathways is still an unachieved task of cartilage neogenesis, and human mesenchymal progenitor cell (MPC) chondrogenesis is considered as a valuable model to better understand hypertrophic development of chondrocytes. Transcription factors Runx2, Runx3, and Mef2c play prominent roles for chondrocyte hypertrophy during mouse development, but little is known on the importance of these key fate-determining factors for endochondral development of human MPCs. The aim of this study was to unravel the regulation of RUNX2, RUNX3, and MEF2C during MPC chondrogenesis, the pathways driving their expression, and the downstream hypertrophic targets affected by their regulation. RUNX2, RUNX3, and MEF2C gene expression was differentially regulated during chondrogenesis of MPCs, but remained low and unregulated when non-hypertrophic articular chondrocytes were differentiated under the same conditions. RUNX3 and MEF2C mRNA and protein levels rose in parallel to hypertrophic marker upregulation, but surprisingly, RUNX2 gene expression changed only by trend and RUNX2 protein remained undetectable. While RUNX3 expression was driven by TGF-ß and BMP signaling, MEF2C responded to WNT-, BMP-, and Hedgehog-pathway inhibition. MEF2C but not RUNX3 levels correlated significantly with COL10A1, IHH, and IBSP gene expression when hypertrophy was attenuated. IBSP was a downstream target of RUNX3 and MEF2C but not RUNX2 in SAOS-2 cells, underlining the capacity of RUNX3 and MEF2C to stimulate osteogenic marker expression in human cells. Conclusively, RUNX3 and MEF2C appeared more important than RUNX2 for human endochondral MPC chondrogenesis. Pathways altering the speed of chondrogenesis (FGF, TGF-ß, BMP) affected RUNX2 or RUNX3, while pathways changing hypertrophy (WNT, PTHrP/HH) regulated mainly MEF2C. Taken together, reduction of MEF2C levels is a new goal to shift human cartilage neogenesis toward the chondral pathway.

10.
Front Bioeng Biotechnol ; 8: 624096, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553127

RESUMO

The incidence of musculoskeletal diseases is steadily increasing with aging of the population. In the past years, extracellular vesicles (EVs) have gained attention in musculoskeletal research. EVs have been associated with various musculoskeletal pathologies as well as suggested as treatment option. EVs play a pivotal role in communication between cells and their environment. Thereby, the EV cargo is highly dependent on their cellular origin. In this review, we summarize putative mechanisms by which EVs can contribute to musculoskeletal tissue homeostasis, regeneration and disease, in particular matrix remodeling and mineralization, pro-angiogenic effects and immunomodulatory activities. Mesenchymal stromal cells (MSCs) present the most frequently used cell source for EV generation for musculoskeletal applications, and herein we discuss how the MSC phenotype can influence the cargo and thus the regenerative potential of EVs. Induced pluripotent stem cell-derived mesenchymal progenitor cells (iMPs) may overcome current limitations of MSCs, and iMP-derived EVs are discussed as an alternative strategy. In the last part of the article, we focus on therapeutic applications of EVs and discuss both practical considerations for EV production and the current state of EV-based therapies.

11.
Front Cell Dev Biol ; 7: 270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737632

RESUMO

A major problem with chondrocytes derived in vitro from stem cells is undesired hypertrophic degeneration, to which articular chondrocytes (ACs) are resistant. As progenitors of all adult tissues, induced pluripotent stem cells (iPSCs) are in theory able to form stable articular cartilage. In vitro differentiation of iPSCs into chondrocytes with an AC-phenotype and resistance to hypertrophy has not been demonstrated so far. Here, we present a novel protocol that succeeded in deriving chondrocytes from human iPSCs without using pro-hypertrophic bone-morphogenetic-proteins. IPSC-chondrocytes had a high cartilage formation capacity and deposited two-fold more proteoglycans per cell than adult ACs. Importantly, cartilage engineered from iPSC-chondrocytes had similar marginal expression of hypertrophic markers (COL10A1, PTH1R, IBSP, ALPL mRNAs) like cartilage from ACs. Collagen X was barely detectable in iPSC-cartilage and 30-fold lower than in hypertrophic cartilage derived from mesenchymal stromal cells (MSCs). Moreover, alkaline phosphatase (ALP) activity remained at basal AC-like levels throughout iPSC chondrogenesis, in contrast to a well-known significant upregulation in hypertrophic MSCs. In line, iPSC-cartilage subjected to mineralizing conditions in vitro showed barely any mineralization, while MSC-derived hypertrophic cartilage mineralized strongly. Low expression of Indian hedgehog (IHH) like in ACs but rising BMP7 expression like in MSCs suggested that phenotype stability was linked to the hedgehog rather than the bone morphogenetic protein (BMP) pathway. Taken together, unlimited amounts of AC-like chondrocytes with a high proteoglycan production reminiscent of juvenile chondrocytes and resistance to hypertrophy and mineralization can now be produced from human iPSCs in vitro. This opens new strategies for cartilage regeneration, disease modeling and pharmacological studies.

12.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480758

RESUMO

Current therapies involving chondrocytes or mesenchymal stromal cells (MSCs) remain inefficient in restoring cartilage properties upon injury. The induced pluripotent stem-cell (iPSC)-derived mesenchymal progenitor cells (iMPCs) have been put forward as a promising alternative cell source due to their high proliferation and differentiation potential. However, the observed cell loss during in vitro chondrogenesis is currently a bottleneck in establishing articular chondrocyte generation from iPSCs. In a search for candidate mechanisms underlying the low iPSC-derived cartilage tissue yield, global transcriptomes were compared between iMPCs and MSCs and the cell properties were analyzed via a condensation assay. The iMPCs had a more juvenile mesenchymal gene signature than MSCs with less myofibroblast-like characteristics, including significantly lower ECM- and integrin-ligand-related as well as lower α-smooth-muscle-actin expression. This correlated with less substrate and more cell-cell adhesion, impaired aggregate formation and consequently inferior cohesive tissue properties of the iMPC-pellets. Along lower expression of pro-survival ECM molecules, like decorin, collagen VI, lumican and laminin, the iMPC populations had significantly less active ERK1/2 compared to MSCs. Overall, this study proposes that this ECM and integrin-ligand shortage, together with insufficient pro-survival ERK1/2-activity, explains the loss of a non-aggregating iMPC sub-fraction during pellet formation and reduced survival of cells in early pellets. Enhancing ECM production and related signaling in iMPCs may be a promising new means to enrich the instructive microenvironment with pro-survival cues allowing to improve the final cartilage tissue yield from iPSCs.


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistema de Sinalização das MAP Quinases , Biomarcadores/metabolismo , Agregação Celular , Condrogênese , DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Transdução de Sinais/genética
13.
Cell Mol Life Sci ; 76(19): 3875-3889, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30980110

RESUMO

Re-directing mesenchymal stromal cell (MSC) chondrogenesis towards a non-hypertrophic articular chondrocyte-(AC)-like phenotype is important for improving articular cartilage neogenesis to enhance clinical cartilage repair strategies. This study is the first to demonstrate that high levels of non-canonical WNT5A followed by WNT11 and LEF1 discriminated MSC chondrogenesis from AC re-differentiation. Moreover, ß-catenin seemed incompletely silenced in differentiating MSCs, which altogether suggested a role for WNT signaling in hypertrophic MSC differentiation. WNT inhibition with the small molecule IWP-2 supported MSC chondrogenesis according to elevated proteoglycan deposition and reduced the characteristic upregulation of BMP4, BMP7 and their target ID1, as well as IHH and its target GLI1 observed during endochondral differentiation. Along with the pro-hypertrophic transcription factor MEF2C, multiple hypertrophic downstream targets including IBSP and alkaline phosphatase activity were reduced by IWP-2, demonstrating that WNT activity drives BMP and hedgehog upregulation, and MSC hypertrophy. WNT inhibition almost matched the strong anti-hypertrophic capacity of pulsed parathyroid hormone-related protein application, and both outperformed suppression of BMP signaling with dorsomorphin, which also reduced cartilage matrix deposition. Yet, hypertrophic marker expression under IWP-2 remained above AC level, and in vivo mineralization and ectopic bone formation were reduced but not eliminated. Overall, the strong anti-hypertrophic effects of IWP-2 involved inhibition but not silencing of pro-hypertrophic BMP and IHH pathways, and more advanced silencing of WNT activity as well as combined application of IHH or BMP antagonists should next be considered to install articular cartilage neogenesis from human MSCs.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/fisiologia , Via de Sinalização Wnt , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomineralização/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hipertrofia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos SCID , Pessoa de Meia-Idade , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Adulto Jovem
14.
Biofabrication ; 11(1): 015001, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376451

RESUMO

Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/citologia , Heparina/química , Hidrogéis/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Calcificação Fisiológica , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Colágeno Tipo X/metabolismo , Glicosaminoglicanos/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Suínos , Porco Miniatura , Engenharia Tecidual/instrumentação
15.
Acta Biomater ; 76: 135-145, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29933108

RESUMO

Bioactive functional scaffolds are essential for support of cell-based strategies to improve bone regeneration. Adipose-tissue-derived-stromal cells (ASC) are more accessible multipotent cells with faster proliferation than bone-marrow-derived-stromal-cells (BMSC) having potential to replace BMSC for therapeutic stimulation of bone-defect healing. Their osteogenic potential is, however, lower compared to BMSC, a deficit that may be overcome in growth factor-rich orthotopic bone defects with enhanced bone-conductive scaffolds. Objective of this study was to compare the therapeutic potency of human ASC and BMSC for bone regeneration on a novel nanoparticulate ß-TCP/collagen-carrier (ß-TNC). Cytotoxicity of ß-TCP nanoparticles and multilineage differentiation of cells were characterized in vitro. Cell-seeded ß-TNC versus cell-free controls were implanted into 4 mm calvarial bone-defects in immunodeficient mice and bone healing was quantified by µCT at 4 and 8 weeks. Tissue-quality and cell-origin were assessed by histology. ß-TNC was non-toxic, radiolucent and biocompatible, lent excellent support for human cell persistence and allowed formation of human bone tissue by BMSC but not ASC. Opposite to BMSC, ASC-grafting significantly inhibited calvarial bone healing compared to controls. Bone formation progressed significantly from 4 to 8 weeks only in BMSC and controls yielding 5.6-fold more mineralized tissue in BMSC versus ASC-treated defects. Conclusively, ß-TNC was simple to generate, biocompatible, osteoconductive, and stimulated osteogenicity of BMSC to enhance calvarial defect healing while ASC had negative effects. Thus, an orthotopic environment and ß-TNC could not compensate for cell-autonomous deficits of ASC which should systematically be considered when choosing the right cell source for tissue engineering-based stimulation of bone regeneration. STATEMENT OF SIGNIFICANCE: Bone-marrow-derived-stromal cells (BMSC) implanted on bone replacement materials can support bone defect healing and adipose-tissue-derived-stromal cells (ASC) being more accessible and better proliferating are considered as alternate source. This first standardized comparison of the bone regeneration potency of human ASC and BMSC was performed on a novel nanoparticular ß-TCP-enriched collagen-carrier (ß-TNC) designed to overcome the known inferior osteogenicity of ASC. ß-TNC was non-toxic, biocompatible and osteoconductive supporting human bone formation and defect-closure by BMSC but not ASC. Long-term cell-persistence and the distinct secretome of ASC appear as main reasons why ASC inhibited bone healing opposite to BMSC. Overall, ASC-grafting is at considerable risk of producing negative effects on bone-healing while no such risks are known for BMSC.


Assuntos
Tecido Adiposo , Células da Medula Óssea , Fosfatos de Cálcio , Consolidação da Fratura , Nanopartículas , Crânio , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Feminino , Humanos , Camundongos , Camundongos SCID , Nanopartículas/química , Nanopartículas/uso terapêutico , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Células Estromais/transplante
16.
J Biomed Mater Res B Appl Biomater ; 106(6): 2214-2224, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29068568

RESUMO

Tissue engineering approaches for reconstructing full-depth cartilage defects need to comprise a zone of calcified cartilage to tightly anchor cartilage constructs into the subchondral bone. Here, we investigated whether growth and differentiation factor-5-(GDF-5)-augmented fibrin hydrogel can induce a calcified cartilage-layer in vitro that seamlessly connects cartilage-relevant biomaterials with bone tissue. Human bone marrow stromal cells (BMSCs) were embedded in fibrin hydrogel and subjected to chondrogenesis with TGF-ß with or without GDF-5 before constructs were implanted subcutaneously into SCID mice. A novel layered ectopic in vivo model was developed and GDF-5-augmented fibrin with BMSCs was used to glue hydrogel and collagen constructs onto bone disks to investigate formation of a calcified cartilage connecting zone. GDF-5 significantly enhanced ALP activity during in vitro chondrogenesis while ACAN and COL2A1 mRNA, proteoglycan-, collagen-type-II- and collagen-type-X-deposition remained similar to controls. Pellets pretreated with GDF-5 mineralized faster in vivo and formed more ectopic bone. In the novel layered ectopic model, GDF-5 strongly supported calcified cartilage formation that seamlessly connected with the bone. Pro-chondrogenic and pro-hypertrophic activity makes GDF-5-augmented fibrin an attractive bioactive hydrogel with high potential to stimulate a calcified cartilage connecting zone in situ that might promote integration of cartilage scaffolds with bone. Thus, GDF-5-augmented fibrin hydrogel promises to overcome poor fixation of biomaterials in cartilage defects facilitating their long-term regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2214-2224, 2018.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Cartilagem/metabolismo , Fibrina , Fator 5 de Diferenciação de Crescimento , Hidrogéis , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco , Animais , Condrogênese/efeitos dos fármacos , Fibrina/química , Fibrina/farmacologia , Fator 5 de Diferenciação de Crescimento/química , Fator 5 de Diferenciação de Crescimento/farmacologia , Xenoenxertos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Camundongos SCID , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia
17.
Stem Cells Dev ; 25(8): 598-609, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26906619

RESUMO

Induced pluripotent stem cells (iPSCs) are an attractive cell source for cartilage regeneration, but current in vitro chondrogenic differentiation protocols yield insufficient results. In search for shortcomings of iPSC chondrogenesis, this study investigated whether SOX9 protein was adequately regulated during multiphase chondrogenic differentiation of two human iPSC lines in a comparable manner like during mesenchymal stromal cell (MSC) chondrogenesis. Upon generation of intermediate mesenchymal progenitor cells (iMPCs), SOX9 was induced and reached variable protein levels compared to MSCs. Along with an altered condensation behavior, iMPC cartilage formation was less robust compared to MSCs and better in the iMPC line with higher SOX9 protein levels. Despite efficient Smad-2/3 phosphorylation, TGF-ß-driven chondrogenic stimulation downregulated SOX9 protein in iMPCs rather than increasing levels like in MSCs. Chondrogenesis was further improved by cotreatment with TGF-ß + BMP-4, which appeared to shorten the duration of the SOX9 protein decline. However, this was insufficient to overcome heterogenic outcome and came at the expense of undesired hypertrophy. In iMPCs, but not MSCs, high levels of the SOX9-antagonizing hsa-miR-145 correlated with low SOX9 protein quantity. Thus, considerable iMPC heterogeneity with variable SOX9 protein levels, an altered condensation pattern, and low early SOX9 inducibility appeared as critical shortcomings of iPSC chondrogenesis. We suggest consistent quality of intermediate cell populations with high SOX9 protein induction as important indicators to obtain robust cartilage formation from iPSCs. The impact of this study is the identification of a SOX9 protein regulation opposite to MSC chondrogenesis that will now enable a selective adaptation of the currently limited protocols to the specific needs of iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Fatores de Transcrição SOX9/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Células Cultivadas , Condrogênese , Colágeno Tipo II/metabolismo , Expressão Gênica , Humanos , MicroRNAs/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/fisiologia
18.
Tissue Eng Part A ; 21(23-24): 2840-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26431739

RESUMO

Human mesenchymal stromal cells (hMSC) differentiating toward the chondrogenic lineage recapitulate successive phases of embryonic chondrocyte maturation developing from progenitor cells to hypertrophic chondrocytes. Osteoarthritic cartilage is characterized by an alteration in chondrocyte metabolism and upregulation of hypertrophic differentiation markers. A number of studies point toward a functional role for microRNAs (miRs) in controlling chondrocyte differentiation and development of osteoarthritis (OA). However, information on miRs that may regulate a specific phase of chondrocyte maturation, especially hypertrophy, is lacking. We here aimed to unravel miR profiles modulated during chondrogenesis of hMSC to obtain new differentiation markers and potential new targets relevant for differentiation outcome and OA development. hMSC were subjected to transforming growth factor-ß (TGF-ß)-driven chondrogenesis and miR profiles were determined by microarray analysis at distinct developmental time points. Expression of selected miRs was compared to cultures lacking chondrogenesis and to redifferentiated nonhypertrophic articular chondrocytes. Among 1349 probed miRs, 553 were expressed and 169 (31%) were significantly regulated during chondrogenesis. Hierarchical clustering identified specific miR expression patterns representative for MSC, prechondrocytes, chondroblasts, chondrocytes, and hypertrophic chondrocytes, respectively. Regulation of miR-181 family members allowed discrimination of successive differentiation stages. Levels of several miRs, including miR-23b, miR-140, miR-181, and miR-210 positively correlated with successful chondrocyte formation. Hypertrophic MSC-derived chondrocytes and nonhypertrophic articular chondrocytes showed differential expression of miR-181a, miR-210, and miR-31, but not miR-148a implicated in COL10A1-regulation. We conclude that the here identified stage-dependent miR clusters may have imperative functions during chondrocyte differentiation providing novel diagnostic tools and targets of potential relevance for OA development.


Assuntos
Diferenciação Celular , Condrócitos/metabolismo , Colágeno Tipo X/biossíntese , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Osteoartrite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Condrócitos/patologia , Feminino , Humanos , Hipertrofia , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , Fator de Crescimento Transformador beta/farmacologia
19.
Cell Tissue Res ; 358(3): 749-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129109

RESUMO

Xenogeneic or allogeneic chondrocytes hold great potential to build up new cartilage in vivo. However, immune rejection is a major concern for the utility of universal donor-derived cells. In order to verify the reported immune privilege of chondrocytes in vivo, the aim of this study was to assess engraftment of human articular chondrocytes (HAC) in minipig knee cartilage defects and their contribution to cartilage regeneration. HAC were transplanted matrix-assisted within two hydrogels into full-thickness cartilage defects of minipigs or implanted ectopically into immune deficient mice to assess redifferentiation capacity. At 2 and 4 weeks after surgery, cell-persistence and host cell invasion were monitored by species-specific in situ hybridization and RT-PCR. Early tissue regeneration was evaluated by histomorphometry and a modified O'Driscoll score. HAC capable of successful in vivo chondrogenic redifferentiation persisted at ectopic sites for 4 weeks in both carrier materials. Early defect regeneration involved extensive host cell invasion and a decline of HAC to less than 5 % of initial cell numbers in 6/12 defects within 2 weeks. Few clusters of persisting HAC within collagen type II-rich tissue were surrounded by porcine macrophages. Four weeks after cell transplantation, most of the defects contained well-integrated cell-rich tissue free of human cells with no apparent difference between hydrogel carriers. In summary, HAC failed to engraft in porcine articular cartilage defects despite their ability for successful in vivo redifferentiation. The co-localization of macrophages to hydrogel-implanted HAC suggests active graft rejection without evidence for an immune-privileged status of xenogeneic chondrocytes in a large animal joint.


Assuntos
Cartilagem Articular/patologia , Condrócitos/transplante , Macrófagos/metabolismo , Transplante Heterólogo , Animais , Remodelação Óssea , Diferenciação Celular , Sobrevivência Celular , Condrócitos/citologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Camundongos SCID , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração , Especificidade da Espécie , Suínos , Porco Miniatura
20.
Cell Physiol Biochem ; 33(6): 1607-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24851851

RESUMO

AIM: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR)-ß antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs) or improve differentiation by suppressing hypertrophic chondrocyte development. METHODS: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-ß on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP), indian hedghehog (IHH) and matrix metalloproteinase (MMP)-13 were assessed. RESULTS: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-ß-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. CONCLUSION: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARß signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP)-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.


Assuntos
Condrogênese/efeitos dos fármacos , Dibenzazepinas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores do Ácido Retinoico/antagonistas & inibidores , Adolescente , Adulto , Idoso , Fosfatase Alcalina/genética , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/genética , Humanos , Metaloproteinase 13 da Matriz/genética , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Receptores do Ácido Retinoico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...